Control of myogenic differentiation by fibroblast growth factor is mediated by position in the G1 phase of the cell cycle

نویسندگان

  • B Lathrop
  • K Thomas
  • L Glaser
چکیده

We have used the expression of the muscle form of creatine phosphokinase (M-CPK) to assay myogenic differentiation in the cloned muscle cell line BC3Hl. BC3Hl cells express M-CPK when arrested in the G0 portion of the cell cycle. Addition of the anionic form of brain fibroblast growth factor (B-FGF) rapidly represses synthesis of M-CPK with a half-time of 7 h. Even though B-FGF is not mitogenic for the cells, it causes quiescent BC3Hl cells to exit from the G0 portion of the cell cycle, and to accumulate at a new restriction point approximately 4 to 6 h in the G1 portion of the cell cycle. The repression of M-CPK synthesis by B-FGF is reversible upon removal of B-FGF, and cells which have re-initiated expression of M-CPK have also returned to the G0 portion of the cell cycle. The primary control of M-CPK expression by B-FGF appears to be at the level of gene transcription. We conclude that arrest of cells at G0 but not at other positions in the G1 phase of the cell cycle provides permissive conditions for the expression of muscle-specific proteins, and that defined polypeptide growth factors, in this case B-FGF, are important in the control of the expression of muscle-specific proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fibroblast Growth Factor 21 Promotes C2C12 Cells Myogenic Differentiation by Enhancing Cell Cycle Exit

Fibroblast growth factor 21 (FGF21), a secretion protein, functions as a pivotal regulator of energy metabolism and is being considered as a therapeutic candidate in metabolic syndromes. However, the roles of FGF21 in myogenic differentiation and cell cycle remain obscure. In this study, we investigated the function of FGF21 in myogenesis and cell cycle exit using C2C12 cell line. Our data show...

متن کامل

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor

Analysis of MM14 mouse myoblasts demonstrates that terminal differentiation is repressed by pure preparations of both acidic and basic fibroblast growth factor (FGF). Basic FGF is approximately 30-fold more potent than acidic FGF and it exhibits half maximal activity in clonal assays at 0.03 ng/ml (2 pM). FGF repression occurs only during the G1 phase of the cell cycle by a mechanism that appea...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 101  شماره 

صفحات  -

تاریخ انتشار 1985